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Abstract

This thesis will focus on single phase high entropy alloys and their ab initio calculation. It will

discuss the principal points of the ab initio theory and the theory of alloys including thermo-

dynamics and quantum mechanics. First, it will introduce the results for the metals what are

included in the alloys. These results are the equilibrium volume, bulk modulus and charge den-

sity. The equilibrium volume and the bulk modulus will be compared with experimental values.

The following sections will discuss alloys with di�erent compositions. The equilibrium volume

will be compared with experimental values. Since the experimental values are given at 300 K

temperature, they should be extrapolated to 0 K - an extrapolation method will be introduced.

There will be also a discussion about the alloy shrinking, charge density of alloys and bulk moduli

of alloys. The thesis is also serves as a testing for the QNA method.
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1 Introduction

1.1 Description of single phase high-entropy alloys

High-entropy alloys (HEAs) are containing multiple �at least four or more� elements in equimo-

lar or near-equimolar composition. The high entropy of mixing increases the stability of the solid

solutions.

Their name -HEAs- can be explained with statistical thermodynamics. The con�gurational

entropy of a system:

∆Sconf = kB lnΩ, (1)

where k is the Boltzmann's constant1 and Ω is the multiplicity what means the number of

ways in which the available energy can be mixed among the particles of the system.

The con�gurational entropy can be expressed by a di�erent equation where we consider the

concentration (or the mole fraction) of the elements:

∆Sconf = −R
n∑
i=1

ci lnci, (2)

where R is the gas constant2 and ci is the concentration of the ith element.

As an example, let's consider an equimolar alloy. The con�gurational entropy can be calculated

as follows:

∆Sconf = kB lnΩ = −R
(

1

n
ln

1

n
+

1

n
ln

1

n
+ ...+

1

n
ln

1

n

)
= −R ln

1

n
= R lnn (3)

1kB = 1.38 · 1023 J/K
2R = 8.314 J ·mol/K

1



 

S c
o

nf
 (J

/K
)

0

0.5

1

1.5

2

2.5

3

3.5

Number of components
0 5 10 15 20

Entropy

Figure 1: ∆Sconf plotted as the function of the number of the components in an equimolar
high-entropy alloy. The ∆Sconf is in terms of gas constant.

On the Figure 1 one can observe how the ∆Sconf changes with the number of the components in

an equimolar HEA. The Figure 2, shows a sketch of two equimolar systems. One of them (1;) is

unmixed, and the other (2;) is mixed forming a random solid solution.

1; 2;

Figure 2: A 2-dimensional sketch of an equimolar unmixed (1;) and a mixed (2;) system. Di�erent
colors represent di�erent metals. The (2;) system can be considered as a random solid solution.
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Lets' look at the next equation:

∆Hf

Tm
= ∆Sf ∼ R, (4)

where ∆Hf is the enthalpy change per mole, Tm is the melting point, ∆Sf is the entropy

change per mole and R is the gas constant. The ∆Sf ∼ R means that the entropy change from

solid to liquid transition is about the value of the R. ∆Hf ∼ RTm. ∆Hf is the energy what needs

to destroy the 1/12 of all bonds in the solid. Since the mixing entropy is quite large, it can lower

the free energy of mixing, ∆Gmix. ∆Gmix = ∆Hmix−T∆Smix. The decreased free energy causes

the solid solution phases to have greater ability to compete with intermetallic compounds, which

usually have much lower ∆Sconf because they are more ordered. The mixing state of constituent

elements would be increased by the mixing entropy, especially at higher temperatures.

The four core e�ects of HEAs

High-entropy e�ect

This one is the most important e�ect. It can enhance the formation of solid solutions and makes

the microstructure much simpler as expected.

There are three types of competing states:

• elemental phase,

• intermetallic compounds,

• solid solutions.

The elemental phase is the terminal solid solution based on one metal element. Intermetallic

compound is a stoichiometric compound with speci�c superlattices. Solid solutions have all of

the elements in one speci�c crystal structure such as BCC, FCC or HCP. From these states, the

one with the lowest free energy would be in equilibrium so that would be realized.

Severe lattice distortion e�ect

This caused by the fact that every di�erent atom has di�erent neighbors. Di�erent elements

have di�erent size and di�erent interaction between each other what leads to distortion. This is

illustrated on the Figure 3 below. One can observe that there is no unitary lattice parameter.

There is only an average lattice and this can be observed by x-ray di�raction as well.
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One-component BCC alloy
with no distortion

Four-component BCC alloy
with severe distortion

Figure 3: Schematic picture of two BCC lattices. One has only one component with no distortion,
the other has �ve components with severe distortion

One can observe on the Figure 3 that how the lattice behaves when there are several di�erent

components in it. The bonding angles and distances are di�erent, because of the di�erent atomic

sizes and interactions. This distortion will have a lot of e�ects on the properties of the alloy. For

example the strength and the hardness increase. The electrical conductivity decreases because

the distortion will scatter the electrons more. Phonon scattering becomes larger what decreases

the thermal conductivity.

Sluggish di�usion e�ect

One main type of the transformations is the di�usion-controlled transformation. This kind of

transformation requires cooperative di�usion of many di�erent kind of atoms. In HEAs, the

di�usion mechanism is di�erent from the conventional alloys. It is know that in the conventional

alloys, the di�usion goes by the so called �vacancy mechanism�. This is when the vacancy and

a nearby atom are changing their places. In HEAs, the di�usion is a bit di�erent because there

are di�erent atoms competing to change place with the vacancy. The many di�erent atoms will

cause larger �uctuation in the lattice potential energy what can serve as barriers and traps for

the di�usion of atoms. These e�ects are leading to the sluggish di�usion e�ect. This e�ect a�ects

phase nucleation, distribution and growth, increased recrystallization temperature, slower grain

growth, reduced particle coarsening rate. The mentioned e�ects can improve the properties such

as strength, toughness, creep resistance, especially at high temperatures.
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Coctail e�ect

The high-entropy alloys can be multiphase alloys as well. This means that the alloy can have

several di�erent phases depending on the composition, the processing, and other properties.

The property of the whole alloy comes from these phases' overall properties. The alloy can be

regarded as an atomic-scale composite, because each phase of it is a di�erent solid solution. The

properties of the composite not only come from the basic elements by the mixture rule but also

from the mutual interactions between all the elements and the severe lattice distortion. These

interactions and distortion give excess quantities in addition to the prediction of the mixture

rule.
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1.2 Review

Up to our knowledge, ab initio calculations on HEAs have been performed only in the group of

Professor Levente Vitos under his guidance. A crucial point was for starting of these calculations

the recognition of an average crystalline structure with an average lattice parameter necessary

for the calculations. Despite the fact that the solid solution of HEAs are extremely distorted.

Till now this group has published few papers[3], [4], [5].

1.3 Motivation

In order to understand and to learn the EMTO calculations based on Vitos's calculation method

and code I reproduced some of earlier results of the Vitos's group in the case of NiCoFeCrAlx
alloys. Getting practice in these calculations I started to calculate the electron density values.

First I have calculated the electron densities for the elements and then for the alloys with known

crystalline structure. Afterwards I have compared the electron densities obtainable as the average

value of the elements with that calculated from the alloy. The matching of these two values bases

the alloy designing using properly averaged values of the elements. This way of designing should

be more e�cient than the "trial and error" method.
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2 Theoretical model

2.1 Ab initio theory

The �nal goal of this theory is to solve the Schrödinger equation for N particles. The equation

for this problem is:

HΨ = EΨ, (5)

where Ψ = Ψ(~r1, ..., ~rN , ~R1, ..., ~RM ) is the N -particle wave function. ~ri represents the posi-

tions of the N electrons, and ~Rj represents the positions of M ions. Ψ is an eigenfunction of the

Hamiltonian H. The Hamiltonian is expressed as follows:

H = − ~2

2me

N∑
i=1

∇2
ri−

~2

2

M∑
i=1

∇2
Ri

Mi
−q2

N∑
i=1

M∑
j=1

Zj

|~ri − ~Rj |
+
q2

2

N∑
i 6=j

1

|~ri − ~rj |
+
q2

2

M∑
i 6=j

ZiZj

|~Ri − ~Rj |
, (6)

where me is the mass of the electrons, and Mi is the mass of the ions. So, the �rst term is

the kinetic energy of the electrons, the second is the ions. The third is the interaction between

the electrons and ions. (~ri − ~Rj) The fourth and the �fth parts are for the electron-electron and

ion-ion interaction.

The equation becomes more simple when we apply the Born-Oppenheimer approximation. This

says we can neglect the ions' kinetic energy and look at them as a static background. It is

because the electrons have much less mass and they can immediately pick up the changes of the

ion con�guration. The H will be simpli�ed to:

− ~2

2me

N∑
i=1

∇2
ri − q

2
N∑
i=1

M∑
j=1

Zj

|~ri − ~Rj |
+ q2

N∑
i 6=j

1

|~ri − ~rj |

Ψ = (T + Vext + V ) = EΨ, (7)

where T is the kinetic energy, Vext is the external potential what mentioned as static back-

ground in the Born-Oppenheimer approximation, and V is the electron-electron interaction. The

most important part of the equation is the Vext, because this makes the Hamiltonian unique. T

and V are the same for all interacting N -electron system.

7



2.2 Density functional theory

The density functional theory (DFT) has introduced in the 1960s. The two founders and pioneers

were Hohenberg and Kohn.[6]

The Hohenberg-Kohn theorem says that the expectation value O = 〈Ψ|O|Ψ〉 of any operator O is

a unique functional of the ground state density n(~r), O = O[n(~r)]. The speciality of this theorem

is that we know the ground state density of a certain N -particle system, we can calculate any

other system, without needing to calculate its many-body wave functions.

The ground state energy of a system can be written as a functional, since it is the expectation

value of the Hamiltonian:

E[n] = 〈Ψ[n]|T + Vext + V |Ψ[n]〉 (8)

The previous formalisms needs to be improved because they don't give any computational method

to �nd the ground state density. Kohn and Sham has the solution for the problem [7].

The main idea was that to use a non-interacting system that has an external potential Ve� which

gives the same ground state density as for the interacting system with potential Vext. If the

e�ective Hamiltonian of the non-interacting system is given by:

He� = Te� + Ve�, (9)

then its energy functional becomes:

Ee�[n] = Te�[n] +

∫
Ve�(~r)n(~r)d~r. (10)

Since the e�ective system is non-interacting, we can obtain the ground state density by �rst

solving the Schrödinger-like single particle Kohn-Sham equations

(−∇2
ri + Ve�)Ψi = EiΨi, (11)

where Ψi are the single electron orbitals. Then we perform a sum:

ne�(~r) =

N∑
i=1

|Ψi(~r)|2. (12)

The orbitals Ψi will correspond to the N lowest eigenvalues Ei, by virtue of the Pauli exclusion

principle.
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Since n(~r) = ne�(~r) we can rewrite the equation (8) in the following way:

E[n] = Te�[n] +

(
T [n]− Te� + V [n]− 1

2

∫ ∫
n(~r)n(~r ′)

|~r − ~r ′|
d~rd~r ′

)
+

+
1

2

∫ ∫
n(~r)n(~r ′)

|~r − ~r ′|
d~rd~r′ +

∫
Ve�(~r)n(~r)d~r

:= Te�[n] +
1

2

∫ ∫
n(~r)n(~r′)

|~r − ~r ′|
d~rd~r′ +

∫
Vext(~r)n(~r)d~r + Exc[n]. (13)

Every information about the electron interactions, except for the Hartree term has been moved to

the exchange correlation energy functional Exc[n]. According to the Hohenberg-Kohn theorem,

the ground state density should minimize the energy functional in the previous equation, (13).

By taking the variation respect to n(~r) we get:

δE[n]

δn(~r)
=
δTe�[n]

δn(~r)
+

∫
n(~r ′

|~r − ~r ′|
+ Vext(~r) + Vxc[n(~r)] = 0, (14)

where Vxc[n(~r)] := δExc[n]
δn(~r) .

For the non-interacting system:

δTe�[n]

δn(~r)
+ Ve�(~r) = 0. (15)

Inserting the equation (15) in equation (14), we get:

Ve�(~r) = Vext(~r) +

∫
n(~r ′)

|~r − ~r ′|
+ Vxc(~r). (16)

From now we have the initial guess for n(~r) which is used as input in the equation (16) then the

Ve� potential is used to solve the Kohn-Sham equation (11) . The Ψi obtained are obtained to

construct a new density from (12). Then this density is used as an input in the equation (16) to

get a new potential and so on until we get a self consistent solution.

One of the most common approximation is the local density approximation (LDA), where the

exchange correlation functional is assumed local:

Exc[n] =

∫
εxc[n]n(~r)d~r, (17)

where εxc is the exchange correlation energy per electron. This can be parametrized in a

many ways.
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2.3 EMTO method

The exact mu�n tin orbitals (EMTO) is one of the popular formalisms for solving the Kohn-Sham

equations (11). This method approximates the e�ective potential by dividing the space into two

parts. That is where its name comes from. The �rs part consists of �xed radius spheres centered

around the lattice sites. The potential is assumed spherically symmetric inside the spheres. The

second part is between the spheres what called interstitial. The potential is constant here and it

consists of planes. These conditions can be expressed as:

Ve�(~r) ≈ Vmt := V0 +
∑
R

(VR(rR))− V0), (18)

where ~rR := rRr̂R = ~r− ~R and omit the vector notation R. By de�nition VR(rR) = V forrR ≥
sR. The Kohn-Sham equations are solved separately in each region. Inside the spheres, the

Kohn-Sham equation (11) simpli�es to a radial Schrödinger equation, and in the interstitial to

a Helmholtz equation. After solving these equations using certain expanded basis functions, the

problem of solving the di�erential equation (11) is reduced to the algebraic problem of matching

the expansion coe�cients.

In the EMTO method, the Kohn-Sham orbitals Ψi are expanded in exact mu�n-tin orbitals

Ψ
a
RL, viz.

Ψi(~r) =
∑
RL

Ψ
a
RL(Ei, ~rR)vaRL,i, (19)

where vaRL,i are the expansion coe�cients, chosen such that the equation (19) solves the

Kohn-Sham equation in all space. We use the formalism that L := (l,m), where l is the orbital-,

and m is the magnetic quantum number respectively. For the interstitial region we use screened

potential spherical waves Ψ
a
RL as basis functions, which solves the Helmholtz equation

(∇2 + κ2)Ψ
a
RL(κ2, ~rR) = 0, (20)

where κ2 := E − V0, and E is the energy. The boundary conditions for this equation are

given in combination with non-overlapping spheres with radius aR centered around R. Inside

the spheres the basis functions are chosen to be partial waves, which are products of the solution

to the radial Schrödinger equation,

∂2(rRφRl(E, rR))

∂r2
=

(
l(l + 1)

r2
R

+ VR(rR)− E
)
rRφRL(E, rR), (21)

and real spherical harmonics, viz.

φaRL(E,~rR) ∼ φRL(E, rR)YL(r̂R). (22)
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They are de�ned for general complex energies and for rR ≥ sR. The matching condition should

now be set up between φaRL(E,~rR) and Ψa
RL(κ2, ~rR) at aR. However, since we want the possibil-

ity of overlapping potential spheres, usually sR > aR. Hence a free electron solution Φa
RL(R,~rR)

is introduced, which joins continuously and di�erentiable to the partial waves at sR and contin-

uously to the screened spherical wave at aR. Matching of all coe�cients will lead to the kink

cancellation equation,

∑
RL

(SaRLR′L′(κ
2
i )− δRR′δLL′Da

RL(Ei))v
a
RL,i = 0, (23)

where Da
RL denotes to the EMTO logarithmic derivative function[8],[9], and SaRLR′L′ is the

slope matrix[10]. This de�nes the kink matrix for a general complex energy z, viz.

Ka
RLR′L′(z) := δRR′δLL′D

a
RL(z)− SaRLR′L′(z). (24)

A solution of the equation (23) will give the single electron eigenvalues Ei and wave functions

Ψi. The EMTO method solves the equation (23) by the Green's function method, which uses

the path operator gaR′L′RL, de�ned as the inverse of the kink matrix (24),

∑
R′′L′′

Ka
R′L′(z)g

a
R′′L′′RL(z) := δRR′δLL′ . (25)

The eigenvalues will be the poles of gaR′L′RL(z). This is a green's function, since it is the inverse

of the operator (z − He�), hence the name Green's function method. If we have translational

symmetry, the sum over site index in equation (23) and (25) is over the atoms in the primitive

cells. The kink matrix, path operator and slope matrix will then depend on the Bloch k-vector

in the �rst Brillouin zone.

Since the energy derivative of the kink matrix, K̇a
RLR′L′(z), gives the overlap matrix for the

EMTO basis set, the matrix elements of the properly normalized Green's function become

GRLR′L′(z) =
∑
R′′L′′

gaRLR′′L′′(z)K̇
a
R′′L′′R′L′(z)− δRR′δLL′IaRL(z), (26)

where IaRL(z) accounts for the non-physical poles of K̇a
RLR′L′(z). The total number of states

at the Fermi level EF is obtained by using the Cauchy residue theorem, viz.

N(EF ) =
1

2πi

∑
RLR′L′

∮
GRLR′L′(z)dz, (27)

where the energy integral is carried out along a complex contour that cuts the real axis below

the bottom of the valence band at the EF . The charge density is computed on the same complex

contour. The formalism can be generalized to include spin.
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2.3.1 Coherent Potential Approximation

The coherent potential approximation was introduced by Soven[11] for the electronic structure

problems and by Taylor[12] for phonons in random alloys. Later, Györ�y[13] formulated the

CPA in the framework of the multiple scattering theory using the Green function technique.

The CPA is based on the assumption that the alloy may be replaced by an ordered e�ective

medium, the parameters of which are determined self-consistently. The impurity problem is

treated within the single site approximation. This means that one single impurity is placed in an

e�ective-medium and no information is provided about the individual potential and charge den-

sity beyond the sphere or polyhedron around this impurity. The principal idea of the CPA within

the mu�n-tin formalism illustrated below. We consider a substitutionary AaBbCc..., where the

atoms A,B,C, ... are randomly distributed in the underlying crystal structure. Here a, b, c, ...

stand for the atomic fractions of the A,B,C, ... atoms, respectively. This system is characterized

by the Green function g and the alloy potential Palloy. The latter, due to the environment, shows

small variations type of the atoms. There are two main approximations within the CPA. First, it

is assumed that the local potentials around a certain type of atom from the alloy are the same i.e.

the e�ect of local environments is neglected. These local potentials are described by the potential

functions PA, PB, PC , .... Second, the system is replaced by a monoatomic setup described by the

site independent coherent potential P̃ . In terms of Green functions, one approximates the real

Green function g by a coherent Green function g̃. For each alloy component i = A,B,C, ... a

single-site Green function gi is introduced.

The main steps to construct the CPA e�ective medium are as follows. First, the coherent Green

function is calculated from the coherent potential using an electronic structure method. Within

the Korringa−Kohn−Rostoker (KKR) or Linear Mu�n-Tin Orbital (LMTO) methods, we have

g̃ =
[
S − P̃

]−1
(28)

where S denotes the KKR or LMTO structure constant matrix corresponding to the underly-

ing lattice. Next, the Green functions of the alloy components, gi, are determined by substituting

the coherent potential of the CPA medium by the real atomic potentials Pi. Mathematically,

this condition is expressed via the real-space Dyson equation

gi = g̃ + g̃(Pi − P̃ )gi , i = A,B,C... (29)

Finally, the average of the individual Green functions should reproduce the single-site part of

the coherent Green function, i.e.

g̃ = agA + bgB + cgC + ... (30)

Equations (29), (30) are solved iteratively, and the output g̃ and gis are used to determine the

electronic structure, charge density and total energy of the random alloy.
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2.4 Exchange-correlation approximations

I will present a few expressions for the exchange-correlation functionals used in the density

functional calculations.

2.4.1 LDA - Local Density Approximation

As I mentioned before there is a very common approximation, the Local Density Approximation

(LDA). The exchange-correlation energy can be written as:

Exc[n] = Ex[n] + Ec[n] =

∫
n(~r)εx([n];~r)d~r +

∫
n(~r)εc([n];~r)d~r, (31)

where εx([n];~r) and εc([n];~r) represents the exchange and the correlation energies per elec-

tron, respectively.

In spin polarized case one can write the following equation for the exchange energy:

Ex[n↑, n↓] = (Ex[2n↑] + Ex[2n↓])/2, (32)

where n↑ and n↓ are the spin-up and spin-down electron densities, respectively.

For a uniform non-polarized electron gas, the exchange energy per electron is:

εx(n) = −3

2

(
3

π

)1/3

n1/3. (33)

The exchange potential is the density derivative of n · εx(n):

µx(n) = −2

(
3

π

)1/3

n1/3. (34)

2.4.2 GGA - Generalized Gradient Approximation

In the Generalized Gradient Approximation[14], the exchange energy per electron is:

εx(n, s) = εx(n)Fx(s), (35)

where

s =
|∇n|
2kFn

, (36)

what is the dimensionless or reduced density gradient, kF = (3π2n)1/3, and

Fx(s) = 1 + κ− κ

1 + µs2/κ
, (37)

with κ = 0.804 and µ = 0.21951.
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The GGA correlation energy per electron is given as:

εc(rs, η) = εc(rs, η) +H(rs, η, t), (38)

where

t =
|∇n|

2ksg(η)n
, (39)

ks = (4kF /π)1/2,

g(η) =
(1 + η)2/3 + (1− η)2/3

2
, (40)

and η =
n↑−n↓
n↑+n↓

. The H(rs, η, t) is given by:

H(rs, η, t) = γg(η)3ln

{
1 +

β

γ
t2
[

1 + ξt2

1 + ξt2 + ξ2t4

]}
, (41)

where

ξ =
β

γ

1

exp[−εLDAc (n)/2γg(η)3]− 1
, (42)

γ = 0.031091 and β = 0.066725.

2.4.3 QNA - Quasis non-local gradient level exchange-correlation approximation

The quasi-non-uniform gradient-level exchange-correlation approximation[15], [16] is a really new

approach of exchange correlation, it was published �rst in 2012.

The aim of this exchange correlation is to give more accurate results. It divides the selected

system into subsystems. Each subsystem functional has its own optimal parameters (µ, β) deter-

mined by the element-speci�c valence-core overlap region. The overall functional can be written

as a superposition of the subsystem functionals:

EQNAxc [n] =
∑
q

∫
Ωq

εLDAx (n)F
optq
xc (rs, s)d

3r, (43)

where F optqxc is the PBE/PBEsol enhancement function based on µ, βoptq optimized for the alloy

component q. The integration domain is within Ωq around each atomic site q.

The optimal values for µ and β can be chose by �nding such parameters what are minimizing

|V0 − Vexpt|
Vexpt

+
|B0 −Bexpt|

Bexpt
, (44)

where V0 is the equilibrium volume and B0 is the equilibrium bulk modulus.

14



2.5 Calculation of the electron density n

Within the Spherical Cell Approximation (SCA)[10], supposing that the electron density in the

interstitial region equals to the electron density at the surface at the Wigner-Seitz sphere the

electron density can be calculated from the output of the ab initio calculation which gives:

Q = 4πw2n(w). (45)

Where from the n(w) can be calculated using the Wigner-Seitz radius w. Calculation of this

n(w) is straightforward both for the constituent elements and for the HEA alloys.

In the section of the results (Chapter 3.3) of this thesis we are going to compare the electron

density value obtained for the alloys with the weighted average value of the elements.
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2.6 Ground-state properties

The equilibrium Wigner-Seitz radius have been calculated for every metal what are used in this

thesis. It is obtained by calculating the energies for several radii around the experimental value

then I �tted the equation of state (EOS)(46) to the points . The result of a �tting is shown

below on the Figure 4.

 

E
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y 
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-3,307
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-3,307

-3,307

-3,307

Wigner-Seitz radius (a.u.)
2.58 2.6 2.62 2.64 2.66 2.68 2.7 2.72 2.74

 data points from ab initio calculation
a+be-λw +ce-2λw

Figure 4: An example of an equation of state �tting for copper. In practice, I use fewer points. I
�tted the E(w) = a+ be−λw + ce−2λw equation, where the w is the Wigner-Seitz radius in Bohr
units. For this �tting, I got w = 2.661 a.u. what has good agreement with the experimental
data.

I worked with a Morse-type equation of state:

E(w) = a+ be−λw + ce−2λw (46)

where E(w) is the total energy in terms of the Wigner-Seitz radius w, and a, b, c, and λ are

independent Morse parameters.

2 1 a.u. = 0, 529177211 Å
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By x = e−λw:

E(w) = a+ bx+ cx2 (47)

The pressure can be calculated from the total energy:

P = −∂E
∂V

, (48)

where V = 4
3πw

3 is the volume of the Wigner-Seitz cell.

P =
xλ3

4π(lnx2)
(b+ 2cx) (49)

Since the pressure vanishes at r = w, where (b+ 2cx = 0) and x = x0,

x0 = − b

2c
, (50)

and

w = − lnx0

λ
. (51)

Here, w is the equilibrium Wigner-Seitz radius.

Bulk modulus (B) is de�ned as

B = −V ∂P

∂V
, (52)

then becomes

B = − xλ3

12πlnx

[
(b+ 4cx)− 2

lnx
(b+ 2cx)

]
. (53)

Since (b+ 2cx) = 0 at w, where x = x0,

B(w) = − cx2
0λ

3

6πlnx0
. (54)

One should consider that these values can slightly di�er even at zero temperature because of the

zero-point energy.
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2.7 Lattice parameters

In this section I am going to introduce the two basic types of cubic crystal structures what are

occuring in high entropy alloys. Some elements such as manganese have di�erent type of crystal

structure but in that case I will discuss it in the related section. For each calculation I got the

results as the Wigner-Seitz radius of the element. They will be converted to lattice parameters

because it is easier to understand and most of the papers are using this kind of unit to compare

their results.

Wigner-Seitz radius

The Wigner-Seitz radius (w) is the radius of a sphere whose volume is equal to the average

volume per atom in solid. So this radius can be imagined as the radius of the small hard spheres

what are building up the whole solid.

One can get w by this equation:

w =

(
3M

4πρNA

)1/3

, (55)

where M is the molar mass, ρ is the density of the system and NA is the Avogadro number.

The Wigner-Seitz volume is calculated using w by the next equation:

VWS =
4

3
πw3 (56)

18



Face centered cubic structure

This is a cubic structure so I can approximate its volume by calculating the volume of a cube.

N
4π

3
w3 = V (57)

N is the number of the atoms in the unit cell (= 4), w is the Wigner-Seitz radius, V is the

volume of the unit cell. Since this is a cube, the edges are equally long so the V = a3 equation

is valid. The a is the lattice constant.

Using the hard spheres model, the lattice parameter can be expressed in terms of the Wigner-Seitz

radius:

3

√
16π

3
w3 = a (58)

a

b
c

Figure 5: Sketch of the face centered cubic cell. One can see the atomic arrangement on the face
of the the unit cell.

By the Figure 5 one can easily understand the correlation between the atomic radius and the

lattice constant. Since a and b are the edges of the unit cube and c is the face diagonal one can

easily use the Pythagorean theorem:

a2 + b2 = c2, (59)

where a, b and c are the corresponding lines on the Figure 5. One can see that the c can be

expressed as 4r since there are two half and a whole atom on the face of the cube and a = b. So,

the Pythagorean equation will be:

2a2 = (4r)2 → 2a2 = 16r2 → r =

√
2

4
a (60)
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Body centered cubic structure

The volume of the unit cell can calculated by the next equation:

N
4π

3
w3 = V (61)

N is the number of the atoms in the unit cell (= 2), w is the Wigner-Seitz radius, V is the

volume of the unit cell. Since this is a cube, the edges are equally long so the V = a3 equation

is true. The a is the lattice constant.

The lattice parameter can be expressed in terms of Wigner-Seitz radius:

3

√
8π

3
w3 = a (62)

a

bc

Figure 6: Sketch of the body centered cubic cell. One can see the atomic arrangement in the
unit cell.

By observing Figure 6, one can easily calculate and understand the results by simple geometry.

First, let's calculate a. Since all the edges are equal, we get the next equation:

b2 + b2 = a2 →
√

2b = a (63)

We have a and b, so it will be easy to �nd c:

a2 + b2 = c2 → (
√

2b)2 + b2 = c2 →
√

3b = c, (64)

where b is the lattice constant and c = 4r, so:

r =

√
3

4
a (65)
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Extrapolation to 0 K and ZPAE

As the literature mostly have room temperature values for the lattice parameters, I had to apply

an approximated extrapolation to zero Kelvin.

The thermal expansion can be expressed by the next formula:

∆V (1)

V
=

Trt∫
0

αV (T )dT, (66)

where ∆V (1) is the volume change, V is the total volume, αV (T ) is the temperature depen-

dent volume-expansion coe�cient. It is zero at 0 K and αV,rt at room temperature.

Since ∆V (1) constitutes only a small correction with respect to the total volume V , the equation

(66) can be approximated as:

∆V (1)

V
≈

Trt∫
0

αV,rt
T

Trt
dT =

αV,rtTrt
2

. (67)

The original approach is calculated by volumes but since these are cubic structures, it is enough

to use the edges of the cubic cell what are the lattice parameters of each elements or alloys. So

I am going to introduce an average thermal expansion coe�cient α∗ =
αV,rt

6 . The equation for

a0 will be written as:

a0 =
aexpt

1 + α∗Trt
, (68)

where a0 stands for the 0 K lattice parameter in Ångström, aexpt is the experimental lattice

parameter in Ångström, α∗ is the thermal expansion coe�cient in 10−6K−1 unit, and Trt is the

room temperature in Kelvin.

The thermal expansion can be corrected further by applying the correction for zero-point anhar-

monic expression:

a0+ZPAE =
aexpt

1 + α∗Trt
− aZPAE, (69)

The order of magnitude of this correction is around 0, 005 Å for each elements. The exact values

are included in the Table 1. These equations can only be used for single element.

For alloys, I used the weighted average of the values.

α∗ =
n∑
i=1

ciα
∗
i , (70)

where α∗ is the weighted average of the thermal expansion coe�cients, ci is the concentration

of ith element, and α∗i is the thermal expansion coe�cient of the ith element.
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I calculated the weighted average of the ZPAE the same way:

ZPAE =
n∑
i=1

ciZPAEi (71)

ZPAE is the weighted average of the zero-point anharmonic coe�tient, ci is the concentration

of the ith element, and ZPAE is the zero-point anharmonic coe�cient of ith element.

The Table 1 below has the αV,rt, α∗, and ZPAE values for those elements what I used for the

calculations for the alloys.

Element αV,rt(10−6K−1) α∗(10−6K−1) ZPAE (Å)
Al 69,3 34,65 0,012
Cr 14,7 7,35 0,008
Fe 71,4 35,7 0,008
Ni 40,2 20,1 0,008
Cu 49,5 24,75 0,007
Co 41,1 20,55 0,005
V 25,2 12,6 0,004
Nb 21,9 10,95 0,002
Mn 124,8 62,4 0,008
Pd 35,4 17,7 0,004
Ta 18,9 9,45 0,002
W 13,5 6,75 0,002

Table 1: Thermal expansion coe�cients [18] [19] and ZPAE values [20] [21] for the extrapolation
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VED (n) and VEC

These two de�nitions should be discussed. The VEC is the valence electron concentration what

is simply is the number of valence electrons for each element, respectively. For example the VEC

of the aluminum is 3. This is a really simple but powerful number to describe the system. It

has been used to make a di�erence between crystal structures [22], [23], [24]. They describe the

BCC-FCC transition di�erently by the change in the value of the VEC. The same rules will be

applied in this thesis.

The VED is the valence electron density. This can be determined relative to the Wigner-Seitz

volume (56):

VED = n(w) =
z

VWS
, (72)

Where VED = n(w) is the charge density, z is the valence and VWS is the Wigner-Seitz

volume.

The value of the VED is subject of debate. The results can be very di�erent because of the

di�erent calculation of VWS and z. Some people are suggesting quantities to use such as metallic

valence or bonding valence. In this thesis I will investigate some of these values and that how

they line up against the results of the ab initio calculation.

Charge density for alloys

Since I calculated this value for alloys as well, I needed to calculate the weighted average of this

value. I calculated the charge density by getting n(w) of each elements, then summarized them

weighted with their concentration in the alloy.

n(w)e� =
n∑
i

cin(w)i (73)

n(w)e� is the e�ective charge density of the alloy, ci is the concentration of the ith element,

and n(w)i is the charge density of the ith element.
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3 Results

In this section I will summarize the results for high-entropy alloys and their elements as well.

I will try to �nd some correlations between them. The most important goal was to be able to

run the ab initio calculations, extract the results and understand them. The main aspect of the

thesis is the lattice parameters but I will try to explain something about the charge density or

better known as valence.

3.1 Results for elements

3.1.1 Lattice parameters

The lattice parameters have been calculated for the elements used in high entropy alloys in this

thesis. I compared the results of the ab initio calculation with di�erent results in order to get a

picture of the accuracy of my calculations.

Element atabulated (Å) aab initio (Å) aexpt (Å)
Al 4,048 4,019 4,020
V 3,028 3,023 3,024
Cr 2,891 2,800 2,877
Mn 2,905 2,925 2,910
Fe 2,866 2,850 2,853
Co3 2,503 2,485 2,498
Ni 3,524 3,508 3,508
Cu 3,616 3,602 3,595
Nb 3,300 3,288 3,294
Mo 3,141 3,136 3,141
Pd 3,888 3,883 3,875
Ta 3,302 3,282 3,299
W 3,164 3,168 3,160

Table 2: Calculated lattice constants compared with experimental data

The reader can see three di�erent columns for the lattice parameters in Table 2. atabulated is

calculated from the molar mass and density from the periodic table [18], aab initio is calculated

by ab initio and aexpt are the experimental datas[18], respectively. The experimental data is

extrapolated to zero Kelvin using the thermal expansion coe�cient and zero-point anharmonic

expansion. As one can see, these results have only slight di�erence.

3The results for cobalt from a calculation using PBE (GGA) instead of QNA. It is because it has HCP structure
and QNA is not capable of handling HCP structures yet.
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Figure 7: Comparison for lattice constants of di�erent elements and calculation methods
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3.1.2 Charge density

After I obtained the equilibrium lattice parameters for the required metals I calculated the charge

density for them. As it is stated in the Section 2.5 one can obtain Q as a result of the ab initio

calculation. Rearranging the equation (45) for n(w) and substituting w into the formula, the

value of the charge density can be obtained:

n(w) =
Q

4πw2
. (74)

The valence electron density can be expressed from n(w) by multiplying it by the Wigner-Seitz

volume (VWS):

n(w) =
z

VWS
→ z = n(w) VWS , (75)

where n(w) is the electron density in e−

Å3 , z is the valence as the number of electrons and VWS

is the atomic volume in Å3 units.

For the nab initio results, VWS came from the �tting of the equation of state (46), for nUMEG
4,

VWS is calculated from the atomic radii used from the paper [25], for ntabulated, VWS is calculated

from the density and the molar mass of the element (55) and z is referred as the nominal valence

used in [25].

Element nab initio zab initio nUMEG zUMEG ntabulated ntabulated
Al 0,182 2,948 0,167 2,76 0,181 3
V 0,242 3,347 0,251 3,45 0,360 5
Cr 0,303 3,523 0,295 3,53 0,497 6
Mn 0,317 3,462 0,279 3,41 0,245 3
Fe 0,274 3,174 0,285 3,33 0,340 4
Co 0,305 3,147 0,268 3,03 0,364 4
Ni 0,267 2,880 0,256 2,83 0,366 4
Cu 0,225 2,630 0,220 2,57 0,254 3
Nb 0,232 4,120 0,233 4,14 0,278 5
Mo 0,289 4,452 0,283 4,42 0,388 6
Pd 0,231 3,384 0,215 3,15 0,272 4
Ta 0,254 4,495 0,254 4,51 0,278 5
W 0,311 4,937 0,489 7,79 0,379 6

Table 3: Comparison of di�erent n
(
e−

Å3

)
and z values.

4UMEG: Uniform Metallic Electron Gas
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Figure 9: Comparison for valence electron densities (n) for di�erent datas

For both Figure 8 and Figure 9 there are good agreements between the ab initio and UMEG

results. This suggests that the ab initio calculation gives the bonding valence as the result,

de�ned by H,B. Shore and J.H. Rose [26].
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3.1.3 Bulk Modulus

As it is mentioned in the earlier section (Section 2.6), one can get the bulk modulus from the

results of the ab initio calculation by �tting the equation of state curve and substituting the

parameters to the equation for the equilibrium bulk modulus (54). I have collected these results

for the metals used in this thesis into the Table 7.

Since I investigated some literature I found other way to get the bulk modulus from experimental

data [27]. The one I found very interesting is based on the next equation:

nWS = 6, 748 · 10−2

√
B

Vm
, (76)

where nWS is the valence electron density (75), B is the bulk modulus in GPa and Vm is

the molar volume in cm3/mol. The original equation is used for calculate the charge density but

since I have the nWS and V values, I am going to calculate the B.

Element Vm (cm3/mol) nWS B (GPa)

Al 9,771 2,693 70,857
V 8,314 3,592 107,281
Cr 7,012 4,484 140,957
Mn 6,583 4,694 145,034
Fe 6,967 4,066 115,185
Co 6,222 4,513 126,743
Ni 6,499 3,954 101,612
Cu 7,037 3,336 78,300
Nb 10,699 3,437 126,376
Mo 9,287 4,278 169,950
Pd 8,816 3,426 103,471
Ta 10,648 3,768 151,149
W 9,569 4,604 202,820

Table 4: Calculated B where both Vm and nWS obtained from ab initio calculation
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Element V (cm3/mol) nWS B (GPa)

Al 9,987 2,681 71,767
V 8,361 5,337 238,127
Cr 7,268 7,367 394,448
Mn 7,376 3,630 97,171
Fe 7,086 5,038 179,821
Co 6,615 5,396 192,632
Ni 6,586 5,420 193,473
Cu 7,116 3,762 100,721
Nb 10,824 4,122 183,942
Mo 9,321 5,745 307,593
Pd 8,841 4,038 144,128
Ta 10,844 4,115 183,603
W 9,540 5,613 300,540

Table 5: Calculated B where Vm calculated from M and ρ by using equation (55) and nWS

obtained from [26] as nominal valence

Element V (cm3/mol) nWS B (GPa)

Al 9,924 2,477 60,910
V 8,279 3,712 114,084
Cr 7,182 4,378 137,673
Mn 7,344 4,136 125,638
Fe 7,022 4,224 125,299
Co 6,787 3,977 107,330
Ni 6,634 3,800 95,798
Cu 7,022 3,260 74,632
Nb 10,691 3,450 127,216
Mo 9,385 4,195 165,176
Pd 8,820 3,181 89,265
Ta 10,691 3,758 150,971
W 9,579 7,244 502,705

Table 6: Calculated B where Vm calculated from the atomic radius[26] using (56) and nWS

obtained from [26] as bonding valence
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B (GPa)

Element Experimental ab initio
EOS

Table 6. Table 7. Table 8.

Al 76 81,36 70,86 71,77 60,91
V 160 166,33 107,28 238,13 114,08
Cr 160 241,56 140,96 394,45 137,67
Mn 120 247,15 145,03 97,17 125,64
Fe 170 162,05 115,18 179,82 125,30
Co 180 256,75 126,74 192,63 107,33
Ni 180 203,61 101,61 193,47 95,80
Cu 140 161,76 78,30 100,72 74,63
Nb 170 155,90 126,38 183,94 127,22
Mo 230 229,10 169,95 307,59 165,18
Pd 180 197,07 103,47 144,13 89,26
Ta 200 189,01 151,15 183,60 150,97
W 310 310,42 202,82 300,54 502,71

Mean absolute deviation 30,30 52,79 43,70 61,23

Table 7: Comparison for di�erent bulk moduli
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Figure 10: Comparison for di�erent Bulk moduli
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I compared �ve di�erent bulk moduli. The experimental data is from [28], [29], [30]. The ab

initio + EOS is calculated using the equation of state �tting (8). The Table 6-7-8 are described

in their captions.

The results of Table 6 and Table 8 are following each other very closely but this is what I

expected because nUMEG and nab initio values are either following each other as I shown it in

Figure 9. They are somewhat close to the experimental data too but at least they are following

the same trend. The best results obtained by the equation of state �tting. That method has

the lowest mean absolute deviation. The second best is the results for Table 7. There are some

huge di�erences such as for chromium or molybdenum but most of the elements are close to the

experimental value.
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3.2 Results for alloys

In this section I am going to introduce my results for di�erent single phase high entropy alloys.

The main topic will be the determination of the equilibrium Wigner-Seitz radius, the bulk mod-

ulus and the VED. I can only compare the results of Wigner-Seitz radii with experimental ones.

I calculated each elements lattice constants from their Wigner-Seitz radius by (62) and (58),

respectively. The experimental data [4] were extrapolated to zero Kelvin temperature what is

detailed in the Section 2.7.

Since I do not have any data for VED and bulk modulus to compare to, I will investigate that

how the di�erent approaches are di�er from each other. These data hopefully will be useful in

the future to predict the properties of alloys without even running ab initio calculations or make

them easier by serving values as an initial guess.

3.2.1 NiCoFeCrx alloys

I will summarize my results here comparing the lattice constants for experimental (aexpt) and

EMTO (aab initio) results. The EMTO results are for 0 K, and the experimental results are

extrapolated by the formulas I mentioned in the Section 2.7. The x means the mole fraction of

chromium in the alloy. For x = 1, 00, the alloy is equimolar, so every component is in the same

amount � 25%� in the alloy. All the alloys are having FCC structures.

x aexpt aab initio VEC
0,50 3,557 3,521 8,57
0,60 3,558 3,521 8,50
0,70 3,558 3,523 8,43
0,80 3,560 3,525 8,37
0,90 3,561 3,526 8,31
0,95 3,561 3,527 8,28
1,00 3,563 3,527 8,25
1,05 3,563 3,528 8,22
1,10 3,563 3,527 8,20
1,15 3,563 3,529 8,17

Table 8: Calculated lattice constants compared and experimental data for NiCoFeCrx alloys
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Figure 11: Comparison of lattice constants of NiCoFeCrx alloys

There is only a slight between the experimental data and the ab initio calculation. The mean

absolute deviation is 0, 026 Å. The calculation is not only precise but follows the trend correctly.

I believe that the zero-Kelvin approximation would be more accurate I would know the exact

thermal coe�cient for each alloys.
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Figure 13: Valence electron densities of NiCoFeCrx alloys.
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For all these three dependencies we have used Wigner-Seitz radius for calculating the electron

density n. For the UMEG values the bonding valence of [26] was used.

On Figure 12 it is shown that all the VEC values are above 8 what means they have FCC

structure.
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Figure 14: Di�erent bulk moduli for NiCoFeCrx alloys

On the Figure 14 there are three di�erent calculation methods for the bulk modulus. The

black one is obtained by the �tting of the equation of state for the alloys. The green is obtained

by calculating the average bulk modulus of the alloying elements from the ab inito results. The

blue is obtained by calculating the average bulk modulus of the alloying elements from the

experimental results. Unfortunately there are no results for real experimental measurements.
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3.2.2 CuNiCoFeCrAlx alloy

I am going to present the results of experimental (aexpt) and EMTO (aab initio) datas. The x

stands for the mole fraction of aluminum. The last two results are written in italic font are BCC

structures, the others are FCC.

x aexpt aab initio VEC
0,3 3,567 3,564 8,47
0,5 3,568 3,573 8,27
2,8 2,885 2,923 6,73

3,0 2,881 2,936 6,63

Table 9: Calculated lattice constants compared with experimental datas for CuNiCoFeCrAlx
alloys
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Figure 15: Comparison of lattice constants of CuNiCoFeCrAlx alloys

The ab initio performs really well for this alloy. The mean absolute deviation is 0, 023 Å. I

have attached the VEC values in the Table 9 as well. The values are following the rule pretty

well respectively to the crystal structure. The change of the structure can also be observed from

the big jump in the values of the lattice constant.
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3.2.3 NiCoFeCrAlx alloy

I am going to present the results of experimental (aexpt) and EMTO (aab initio) data. The x

stands for the mole fraction of aluminum. The last two results are written in italic font are BCC

structures, the others are FCC.

x aexpt aab initio VEC
0,25 3,577 3,544 7,94
0,30 3,585 3,547 7,88
0,375 3,581 3,554 7,8
1,25 2,857 2,863 7,00

1,50 2,869 2,871 6,81

Table 10: Calculated lattice constants compared with experimental data for NiCoFeCrAlx alloys

La
tt

ic
e 

co
ns

ta
nt

 (A
)

2.8

2.9

3

3.1

3.2

3.3

3.4

3.5

3.6

Mole fraction of Al
0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

Ab-initio
Experimental

Figure 16: Comparison of lattice constants of NiCoFeCrAlx alloys

The mean absolute deviation is 0, 016 Å here. The VEC values are following the rule well

respectively to the crystal structure.
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3.2.4 Other alloys

At this section I am going to present the results for di�erent kind of alloys. Most of them are

containing the three principal elements such as iron, nickel and cobalt, but some of them are

having other components such as refractory or noble metals. Most of them are equimolar except

the NiCoFeCrPd2 alloy. The alloys written in italic font are BCC alloys, the others are FCC.

# Alloy aexpt aab initio

1. NiCoFeCrMn 3,572 3,523
2. NiCoFeCrMnNb 3,604 3,675
3. NiCoFeCrMnV 3,564 3,574
4. NiCoFeCrPd 3,630 3,640
5. NiCoFeCrPd2 3,692 3,695
6. CuNiCoFe 3,570 3,557
7. CuNiFeCr 3,574 3,574
8. CuNiCoFeCr 3,564 3,550
9. MoNbTaW 3,212 3,211

10. MoNbTaVW 3,181 3,183

Table 11: Calculated lattice constants compared with experimental data
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Figure 17: Comparison of lattice constants of other alloys

The results have only slight di�erence, the mean absolute deviation is 0, 017 Å for this group

of alloys. The results for the refractory HEAs are virtually the same as the experimental ones.
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3.2.5 Alloy shrinking

I would like to �nd out if the alloys' components are keeping their density in the alloy. My idea

is to test it by calculating the density for those alloys what are having experimental data for the

density. These data from Ádám Vida's measurement what he used in his thesis [31]. I collected

those data and calculated di�erent densities by di�erent approaches.

I used the next equation to get the average density for alloys from the components' densities:

ρ =

∑
i
ciMi∑

i
ciVi

, (77)

where ρ is the average density in g/cm3, ci is the concentration of the component, Mi is the

molar mass of the element in g/mol, Vi is the atomic volume of the element in cm3.

Three di�erent densities have been calculated using di�erent Vi volumes which have been calcu-

lated: V1 as VWS from ab initio, V2 as VWS from tabulated data, V3 as VWS from Goldschmidt

radius. All results are at room temperature. The ρexpt stands for the experimental data. These

measurements were performed by Ádám Vida [31] using a helium pycnometer (AccuPyc II 1340)

to obtain the densities. The samples have been obtained by casting in could mold using induction

furnace.

Comparing these calculated densities with experimental data shown in Table 12 we can observe

that the experimental density data are systematically above the calculated ones. This means

shrinking of alloy despite the fact that it is a highly distorted structure. The explanation of this

shrinking needs further investigations.

39



Alloy ρexpt
(g/cm3)

ρ1
(g/cm3)

ρ2
(g/cm3)

ρ3
(g/cm3)

1 Ni25Fe50Cr25 7,879 8,134 7,934 7,074
2 NiCoFeCr 8,343 8,350 8,182 7,364
3 CuNiCoFeCr 8,341 8,421 8,336 7,654
4 V90Fe10 6,327 6,436 6,247 5,863
5 V80Fe20 6,568 6,591 6,405 6,022
6 V70Fe30 6,777 6,751 6,569 6,187

7 NixCoxFexCrxAl6.976
x = 23.255

7,811 7,135 7,036 6,471

8 NixCoxFexCrxAl11.11
x = 22.22

7,188 7,452 7,341 6,712

9 NixCoxFexCrxAl24.528
x = 18.867

6,861 6,426 6,427 5,980

10 NixCoxFexCrxAl27.272
x = 18.181

6,688 6,243 6,252 5,837

11 NixCoxFexCrxAl33.356
x = 16.661

6,400 6,061 6,082 5,697

12 NiCoFeCrAl 7,013 6,737 6,724 6,221
13 Ni38.33Fe36Cr13.88Mo6.66W5.15 9,650 9,249 9,126 8,487
14 Ni29.5Fe39.8Cr20Mo6W4.7 9,159 9,056 8,905 8,088
15 Ni35Fe30Cr20Mo10W5 8,995 9,239 9,115 8,296
16 NiFeCrMoW 11,195 11,260 11,214 10,158

Mean absolute deviation 0,234
(2,994%)

0,250
(3,189%)

0,818
(10,451%)

Table 12: Comparison for di�erent calculation methods for densities of alloys with experimental
data. ρ1 from Eq. (77) with VWS from ab initio, ρ2 from Eq. (77) with VWS from tabulated
data, ρ3 from Eq. (77) with VWS from Goldschmidt radius.
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Figure 18: Comparison of densities calculated by using di�erent Vi values for (77)

Figure 18 shows that the data from ab initio and tabulated data scatters around the �rst

bisector whereas those calculated with Goldschmidt atomic radius are systematically below of it.

The mean absolute deviation of the data from the experimental data have been calculated for

the three di�erent densities by the next formula:

MAD =
1

n

i∑
i=1

|fi − yi|, (78)

where n is the number of the values, fi is the ith experimental data and yi is the ith calculated

value for density: ρ1, ρ2 or ρ3, respectively.
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4 Discussion

Element aab initio (Å) aexpt (Å) Bexpt (GPa) Bab initio (GPa)
Al 4,019 4,020 76 81,36
V 3,023 3,024 160 166,33
Cr 2,800 2,877 160 241,56
Mn 2,925 2,910 120 247,15
Fe 2,850 2,853 170 162,05
Co 2,485 2,498 180 256,75
Ni 3,508 3,508 180 203,61
Cu 3,602 3,595 140 161,76
Nb 3,288 3,294 170 155,90
Mo 3,136 3,141 230 229,10
Pd 3,883 3,875 180 197,07
Ta 3,282 3,299 200 189,01
W 3,168 3,160 310 310,42

Deviations
Mean absolute deviation 0,093 - 30,30

Table 13: Summary of calculated elements

In Table 13 the experimental and calculated B values are also shown. In this case the agreement

is not always acceptable especially for Mn, Cr and Co we have found more than 50% deviations

from the experimental data. Similarly deviations for the pure elements have been reported by[10],

see Table 7.1 at page 129.
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x aexpt (Å) aab initio (Å) VEC
NiCoFeCrx

0,50 3,557 3,521 8,57
0,60 3,558 3,521 8,50
0,70 3,558 3,523 8,43
0,80 3,560 3,525 8,37
0,90 3,561 3,526 8,31
0,95 3,561 3,527 8,28
1,00 3,563 3,527 8,25
1,05 3,563 3,528 8,22
1,10 3,563 3,527 8,20
1,15 3,563 3,529 8,17

CuNiCoFeCrAlx
0,3 3,567 3,564 8,47
0,5 3,568 3,573 8,27
2,8 2,885 2,923 6,73

3,0 2,881 2,936 6,63

NiCoFeCrAlx
0,25 3,577 3,544 7,94
0,30 3,585 3,547 7,88
0,375 3,581 3,554 7,8
1,25 2,857 2,863 7,00

1,50 2,869 2,871 6,81

Other
NiCoFeCrMn 3,572 3,523 8,00

NiCoFeCrMnNb 3,604 3,675 7,50
NiCoFeCrMnV 3,564 3,574 7,50
NiCoFeCrPd 3,630 3,640 8,60
NiCoFeCrPd2 3,692 3,695 8,83
CuNiCoFe 3,570 3,557 9,50
CuNiFeCr 3,574 3,574 8,75

CuNiCoFeCr 3,564 3,550 8,80
MoNbTaW 3,212 3,211 12,50

MoNbTaVW 3,181 3,183 11,00

Deviations
Mean absolute deviation 0,019 -

Table 14: Summary of calculated alloys

In Table 14 are shown the lattice constants are for the alloys considered in this thesis, both

experimental obtained by XRD and by ab initio calculations using QNA exchange correlation

approximation. The deviation of the calculated values are less than 0, 019 Å which is a rather

good estimation of the experimental data. The ab initio calculation have been repeated used PBE

(GGA) approximation as well and we have got a slightly larger deviation from the experimental

data, 0, 022Å. This shows the strength of the ab initio calculations for HEAs.
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In the case of alloys we have found again good agreement between the experimental and ab initio

calculations for the lattice constant, see Table 14. The bulk modulus, B values calculated only

for a few single phase HEAs and compared with the experimental data of Vida [31].

Alloy Bab initio Bexpt

NiCoFeCr 206,7 128,5
NiCoFeCrAl0.3 190,9 146,3
NiCoFeCrAl 192,43 173,9
NiCoFeCrAl1.5 156,22 160,8

Table 15: Comparison between ab initio calculated and measured bulk modulis

For the bulk modulus B however the calculation values for single phase HEAs shows large

deviations from the experimental one [31]. The explanation for these deviations needs further

investigations.
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5 Summary

• The EMTO Program Package of professor Levente Vitos is a powerful ab initio calculation

tool to get reasonable results concerning the physical and mechanical properties of the

alloys.

• The QNA version of the program is more accurate than the PBE one.

• We have found good agreement between the calculated and experimental lattice values.

• We have found good agreement between the ab initio electron density values compared to

those calculated from bonding valence and tabulated volume per atom data.

• We have found poor agreement concerning the calculated and experimental bulk modulus

values both for elements and alloys.

• We have found good agreement between the calculated and measured densities for single-

phase HEAs.

• The measured densities for two-phase HEAs are systematically above the calculated one

which can be interpreted as a shrinkage of the structure compared to the ideal hard sphere

structure.

6 What next

We intend to form an ab initio database (lattice constant, Young's-, bulk-, and shear modulus)

for all the BCC and FCC single-phase HEAs published so far. It is challenging to improve

the EOS method for calculation of bulk modulus in order to get a better agreement with the

experimental data. A better B/G ratio would help to predict more accurate the brittleness of

HEAs. These tasks will be solved during the forthcoming PhD thesis.
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